
Journal of Engineering Mathematics, Vol. 5, No. 2, April 1971 
Wolters-Noordhoff Publishing-Groningen 
Printed in the Netherlands 

99 

An Approximate Nonlinear Dynamic Theory for Plates 

O. E. W I D E R A  

College of Engineerin 9, University of Illinois, Chicago, Illinois 60680, U.S.A. 

(Received March 17, 1970 and in revised form November 26, 1970) 

S U M M A R Y  
In this paper an approximate theory for the moderately large motion of transversely isotropic (orthotropic) plates is 
presented. Unlike other methods used in the past, the method used here involves no artificial assumptions. The 
method of approach begins with the equations of a partially non-linear elasticity theory and utilizes a method of 
asymptotic integration to arrive at successive two-dimensional approximations of increasing accuracy. The first 
approximation theory obtained here is the dynamic counterpart of Karman's plate theory. It includes the effect 
of rotatory inertia. 

1. Introduction 

This paper concerns itself with a systematic derivation of two dimensional approximations for 
the vibrations of transversely isotropic (orthotropic) plates from the known equations of a 
partially non-linear theory of three-dimensional elasticity. The method used is that of asymp- 
totic integration which combines dimensional analysis with the expansion in powers of a 
small dimensionless parameter of the solution of the three-dimensional theory [1]. This 
technique was used in a previous article in this journal [2] to derive an iterative static large 
deflection theory for anisotropic plates. 

For static problems the application of the method proceeds as follows : Plate dimensions are 
introduced via changes of the independent variables. The stresses and displacements are then 
non-dimensionalized and expanded in terms of a small geometric parameter. After introducing 
these expansions into the three-dimensional equations and equating equal powers of the para- 
meter, sequences of systems of differential equations are obtained. The lowest order system 
represents the simplest approximate thin plate theory. The higher order systems incorporate 
thickness effects. 

The extension of this method to dynamic problems is accomplished by introducing a length 
scale via the non-dimensionalization process and assuming that this length scale is also ex- 
pandable in terms of the small geometric parameter. Depending on how one chooses this length 
scale, different two-dimensional stress states can be derived. The length scale is thus the 
characteristic wavelength associated with each theory. Expansion of the length scale allows for 
a correction of this characteristic wave-length due to the addition of higher order effects. For 
cylindrical shells this was previously demonstrated in [3]. 

Our attention in this paper is restricted to a length scale which is of the order of a character- 
istic length of the plate. Length scales of the order of the thickness h of the plate yield simplified 
elasticity equations. For static problems, these boundary layer stress-states need to be con- 
sidered if a more exact approximation to the three-dimensional solution near the edges is 
desired (see, for example, [4] ). For the problem of longitudinal wave propagation in cylindrical 
shells, it was shown in reference [-3] that a theory corresponding to a length scale of 0(h) is 
needed to be able to obtain by superposition a wave velocity-wavelength spectrum valid for 
the whole range of wavelengths. 

The first approximation equations obtained in this paper are the dynamic counterpart of 
the well-known von Karman equations [5]. Although the asymptotic method used here yields 
expressions for the transverse shear and normal stress components, their effect is absent in 
the stress-strain relations. The effect does appear in the equations of the second approximation. 
The effect of rotatory inertia, though, is present in the first approximation theory. 
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2. Basic Equations 

Consider a plate made from a transversely isotropic (orthotropic) material and identified 
with a Cartesian coordinate system x~ (i = 1, 2, 3), such that x3 --0 represents the middle surface 
of the plate. Let the x3-axis be the axis of symmetry. If the thickness of the plate is taken as 2h, 
the plate then occupies a region bounded by two parallel surfaces x3 = +_ h and a cylindrical 
surface having generators normal to the middle surface. It is assumed that the order of magni- 
tude of the thickness is small compared to a representative length L along the cylindrical 
boundary. Within the framework of a partially nonlinear theory of elasticity [5], the governing 
equations can be written as 

Strain-Displacement Relations 

_1/,/2 = U2,2_~ - 1 2 /;11 = Ul , I -~-  2 3,1, /222 2U3,2 ,  /212 = Ul ,2  -[- U2,1 -~- U3,1U3,2 

/2c~3 = U~,3 -~- a3 ,~ ,  /233 ~- u3 ,3  

where/2~j denote the strain components  and u~ the components of the displacement vector. 

Equations of Motion 

O'~/Le -~- a/~3, 3 : pUB,u, O'e3,e -t- (0-~B U3,/~),~ Jr- 0-33,3 = pu3,tt 

where a o denote the stress components  and p is the mass density. 

Constitutive Equations 

(1) 

(2) 

1 , , v 3 1 , , v3 
/211 = 13~[0-11--Y0"22) - -  E 3  0"33' /222 : ~ [ 0 - 2 2 - - v ~  g0-33 

/ 3 -  - 

1 v3 2(1+v)  
/233 = E~3 0-33 - -  r ~ - ( O ' l l  -}-0-22), g12 - -  

r. 3 E 
0-12 

1 1 
/313 : a - 3  0-13, /223 : a - 3  0-23 (3)  

where E, E 3, G3, v and v 3 are elastic constants. In the above, Latin indices range from one to 
three while Greek indices range from one to two. A comma preceding a subscript i denotes 
partial differentiation with respect to the coordinate. 

For simplicity's sake the boundary conditions are taken as 

0"13 = 023 = 0"33=0 (x3 = +h)  (4) 

3. Asymptotic Approximation 

We introduce dimensionless coordinates as follows" 

X~ X 3 
= y ,  43 = 7 ; '  = w t  (5) 

where I is an as-yet unspecified length scale and w is the frequency. Dimensionless stresses and 
displacements are defined by 

Uc~= to-vet, U3 = t ~ J g 0 - ~ -  V 3 (6) 
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(Taft -- O'Sa.6 , 

where 

h 

O't 3 - -  O-/~S~t3 , 0"33 = 0-~2 $33 

(7) 

and  o- is a representat ive stress level. In terms of these dimensionless variables,  the fundamenta l  
equat ions  can be rewrit ten as follows" 

S 3 3 - - V n ( S 1 1  -]- /)3,3 - l _ v  2 22 s22) 

/)1,3 - -  

# /)3,1 q- 22S13 

/)2,3 -- 1 (12/nv) ,~2 $23 __ -- ; U3'2 "~- __ 

1 - - V  2 ~ ( l  - -V2)  2 - -  /)2 $11--VS22 fl Ul,l-~Vn'~2S33 2fl2~2 3,1 

1 - v z Y (1 - V2) 2 2 
$ 2 2 - - V S l l  - -  ]./ /)2,2 -1- Vn'~2S33 2,u 2 ,~2 U3,2 

$12 = ( ~ )  [1# (U1,2 -]- U2,1) ~ (1 -- V2)2#2/].2 /)3,2 /)3,11 

1 
$13,3 = - -  ;($11,1@$12,2)-~W2/)1, .c1: 

1 
$23,3 - -  # 

__ -- -- ($12,1 -~ $22,2) ~- W2v2,r,: 

Here,  

1 (1 - v 2) 

} ( 8 )  

E (9) 
V3 

v, = ~3  E , I ,  2 ( 1 + v )  G3 

The  dimensionless variables are in t roduced  in such a way that  the order  of  all variables and  
their derivative is 0 (1). We also consider only dimensionless groups  of mater ia l  constants  which 
are 0(1). In view of condi t ion (7), it is therefore reasonable  to assume tha t  we can expand  
the stresses and  displacements  in terms of  a power  series in 2 2 [see Eq. (8)], 

M M 

U i /~ Si j z E ~(m-1) .~ 2m ( m - l )  2m o, j  , .  Z (10) 
mml m=l 

where ~!.m- 1) (G, z), "i"(m- 1)~k,t~ Z) do not  depend on 2 for m = 1, 2, ..., M -  1 and the remainders  ~tJ 
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s! i ) ({k,  T ; 2)," (M) 2) are ~r (~k, ~; assumed tc be such that they tend to a finite limit as 2 ap- 
proaches zero. 

Length scale I is as-yet arbitrary. As it appears in Eq. (8) in terms of the ratio 1/#, we assume 
that we can also expand this ratio in terms of a power series in 2 2, 

1 n 
- - =  Z ] A(n)/~2n ( 1 1 )  

# , = o  

where #( ' )=  0(1). Form ( 1 1 ) i m p l i e s / = 0 ( L ) .  
On substituting expansions (10) and (11) into Eq. (8) and equating corresponding powers of 

~2 successive systems of differential equations are obtained.  The first two systems are : 

First System 

v (% 0, (% _ . (o),,(o) , (o) _ , (o),,(o) 
3,J ~ "/)l,J - -  - - p t  u3,1~ u2, 3 - -  --pc u3, 2 

7 ( 1 - - " 2 1 2 '  (0)2 1,(0)2 o11~176 o(O) = (1 + pc 

s(O) ,,~(o) (1 v2X, (o).,(o) T ( 1 - v  212' (0)2.(0)2 
2 2 - - ~ ~  ~-" - -  1/~ ~2,2 § 2 ! PC ~3,2 

12--  #(~176177176 (~ v(~ ' (~ ] (Vl, 2 w 2,11 , ~3,2A 

12/72 ~ (0) o(O) _ _ r  1+s(1  21 + , ,  o13,3 - -  , , 

I/172 ~(0) o(0) __ fl(0)(Si02) 1 § S(02),2) §  u2,zv o23,3 ~ 

s(O) fl(O)/o(O) •  ~ , ( l _ V 2 ) f l ( O ) 2  r to(O) , (o)  2_o(0) , (0)~ 
3 3 , 3 ~  - .~o13,1T ~ - -  ,~ L \~  1 t~3,1 ~ ~ ~3,21,1 § 

' 12 3.1/S(0)/)(0)§176 -] §  + , o22 ~3,21,2 A rv x u 3 , ~  

Second System 

/')3,1 = - -  

(1). (,,(1) , , (0)1_ , , (0) , , (1) ,  • ( 1 2 / n v ) . ( 0 )  
Ul,.-* ~ - -  (PC u 3 , 1 ~ P C  u3,11 [ ~13 

b(1) : -  (# (1) ,  ( 0 ) 2 - ,  (0), (1 ) ,  ( ~  c(O) 
2,3 u3,2 ~ PC u3,21 -~- ~  

s i l?  - -  V522-(1) (1 - -  Y2) ` .(1).,(0) 2_ . (0 ) . , (1 )  ] _~ VnS33(0) _~_ ( #  tJl,1 [ PC ~1,1!  

7 (1 - v2) 2 [#(1)2 ,,(0)2 ,,(0) ,,(1) § ~(0)2  u(1,)2] + ~ ~3,1 +4p(1)#(~ ~3,1 

S(1) VS(11)=(1__V2)(~(1),(0)•177 e(0) ~ (  __V2)2 
22 u2,2 T / x  u2,2]TVnO33 + 1 

X []A (1)21~(0)2 ,~(0) I~(1) 2_,  (0)2/)(1)2q 
"3 ,2  §  3,2 d 

(1) ( ~ @ ~ )  f, ,(1)(U(0) -L ,,(0) ~ -.L ,,(0)/,~(1) /)(1]) 
12 ~ (/~ ( 1,2 f u2,11 ~PC ~Ul,2 ~ +7(1 ~ ~2 )2 

. (o)~ + (1) (1) -i- ~ F. (1)2 ~,(0) . (0) 2_,'),,(1) , (0)[,~(0) , (1) .~_ V(1,) 1 U3,21 X L~ u3,1 v3,1 ~ " P C  PC [u3,1 u3,2 ]./(0)2 V3,1 U3,2 A ) 
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S(1) . (1) Is(O) _}_ S(02), i)  ~(0) ( s i l ) 1  A_ S ( 1 ) ]  - -  W 2  i)(1) 13,3 = - - /~  ~ 11,1 - -  T 1 2 , l I T  1,Tz 

. o ( 1 )  ~ W 2 V(1) o~3,3~ = _ t,,l~(s(~,l + s ~ % 2 ) -  ~(~ + 2,~ 

s(l~ _ , .1~o(o) ~o(o)  ~ _ , ( o ) t o . ~  . o r e  ~ + W ~ v ~ l L _ ~ , ( l _ v ~ )  3 3 , 3 - -  --/"r I .~13 ,1~~  /~ t~176  

g,,(1)2 [siO).,(O) • ~(0), (0) ] •  (1), (O){e(1),,(O) •  • ~(1),,(0) • ,,(0),,(1) ~ •  
X { L ?  \ 11~3 ,1~~ ~ 1 ~  1~ W11"~3 ,1~~  ~ 

-]-,,(0)2[e(1)',~(1) -1- c(1-).,( 1 ) ] ]  
1 ~ ~ l l~3 ,1 - -o12u3 ,2]J ,1  
F, ,(1 )2 Is(O) ,,(0) • e(0) ~,(0) ~ A_ ? . (1)  ,,(0) [~(1) ,,(0) . ~(0) .,(1) A_ e(1) ,,(0) A_ ~(0) ,,(1 ) 

-~LP r ~ 12 ~/3,1 ~ ~ ~3,21 ~ ~P * /~ I , ' 12~3 ,1-vo12~3,1~o22~3,2~o22~3,21  

AF]~(0)2/'e(1)"(1) •  "~ (13) 
t~ v3,1 ~ ~  v3,21A,2J 

where 
W 2 

W ~ -  2z (14) 

With regards to Eq. (12) and (13), the following is to be noted. Each system of equations can 
be integrated with respect to ~3 in a step by step manner. The asymptotic method used here 
leads to a solution giving all stress coefficients--inclucing those of transverse shear and normal 
stress. It is to be noted, however, that the transverse terms from the stress-strain relations do 
not appear in the first approximation system (12). Such terms first appear in the next system 
(13), as indicated by the presence of I,, and v,. Scaling (14) indicates that the tangential frequency 
is of a higher order compared to the transverse frequency. Finally, it is necessary to expand 
length scale I due to the fact that the wavelength-frequency spectrum associated with a plate 
theory which includes second order effects must differ from that of the first approximation 
spectrum. The expansion of 1/# accomplishes this for each higher order systemyields a correc- 
tion to the first approximation system (as shown in [3]). 

In the following only the first approximation equations will be considered, as these yield the 
thin plate equations. The procedure for the higher order systems is analogous to that for the 
first, only lengthier. 

4. First Approximation Theory 

Integration of the first eight equations of (12) with respect to ~3 yields (omitting the super- 
scripts on the stress and displacement coefficients): 

~3 = v3(~,  r ~) 05)  

I)1 = V1 (~1, ~2, T) _ f i ( o ) V 3 , 1  ~3 (16) 

U2 = V2(~1, ~2, "c)_]~(0)V3,2 ~3 (17) 

Y ( 1 - v 2 ) I I ( ~  2 2 ) - ] J ( ~  11 ~-1J~/,3,22) ~3]  (18)  Sl~ =~(~ +vV2,2 + ~ , , 

7 (1 -v2)#(~ + V2,2)-#(~ + V~,22) ~31 (19) s22 = ~(0) vVl,1 + V2,2 + 

+ v2., v3,1 . . . .  '~ v3,12 31 (20) S12 = I/3, 2 - -  Z./A 

s13 = s13(r ~2, r176  v1,11 + • Vl 2~ + - -  v212 - - -  Vl r  , , ] A ( 0 ) 2  , 

q- ]A(~  -k ~ T )  [ v 3 , 1 / 1  +V~ z'/2 + V2,2),1]/~ 3 

w 2  ~ (21) 
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5:23 = $23(41,42,  "/7)--]-/(0,2 V2,22 ~- ( ~ )  V2,11 -!- 1/1,12 - ,(0)2 V2, zz~- 

where 

V2( ) = (  ) ,11+(  ),22 

In terms of the dimensionless variables, boundary conditions (4) can be written as 

$13 = $23 = $33 (43 = -~- 1) (23) 

Boundary conditions (23) are to be satisfied by each coefficient of expansions (10). Satisfaction 
of Eq. (23)by Eq. (21)and (22)yields. 

#(0)3 [-/__ ~ ] W  2 
$13- 2 [~vZ V3 - ~ V3'~'),1J (24) 

Vl 11 -1- [7122 -I- - -  V2 12 - - -  Vl.~r (25) , , , ~ ( 0 ) 2  , 

l 
and 

,26, $23 - 2 V2V3 - ~(o)~ V3,* ,2 

V222+ V211+ - -  V 1 1 2 - - - V 2 ~  , , , ~ ( o ) 2  , 

7 (1-v2)[(1-v)V3,2V2~Z3 +(~-)(V2,1+V3,2),2 ] (27) = __ #(0) 2 2 

Integration of the last equation of (12) now yields 

+W2xV3,~43-y(l-v2)#(~ ~+vV2z+u'~ ] . . . .  g (1-v2)(V~,x +vv~,2) 

+ ~3,221 v2~, + vvl,. +, ,o, ~ .  ~ (~- v~t(v~.~ + vv~.~/l 

Jr- 1/3'12(1 --V) [V',2 q- V2,1 +]'/(~ - v 2 )  ]/3,1 V3,2] Jr- ~0)2 (V3,1 Vl,,z@ V3,2 V2,,t) 43 

+ -~(1 - v:)u(~ [v3,1 v :  v~,, + v~,2v:v~,:+ (v 2 v3): 

2 xn~2 
--2(1 --v)(V3,11 V3,22- V3,12)J ~- (28) 
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In order that boundary condition (23) be satisfied, we must have 

$33 = -- 2 (1 -- y2) #(~ IV3,1 V2 V3,1 -~- V3,2 v2 [73,2-}-(V 2 173) 2 

- 2 ( 1  --~)(V3,11 V3,22- V2,12)] 
#(0)4V2 V 2 V3 __ W 2 #{0)2 V 2 2 V3,,~ + 3 W x V3,,~ 

{ [ ~ (1 -- V2) (V2,1 -]- "v V2 2) ] = 3T(1--V2)# (~ V3,11 Vl,l-~-l?V2,2q-#(~ 

(29) 

F ( 1 -  l~2)(V 2 2-}- vV2,1)] V3,22 LV2, 2 ..~ •V1,1 _~_ # ( 0 )  + 

+ (1 -v)v3,12 [Vl,~ + v~,l + #~o)7 (1 - ~ )  v3,~ ~ , d  + ~ (v~,~ Vl,. + ~,2 v~,~) 

(30) 

Equations (25), (27) and (30) are the equations of motion for a partially non-linear plate 
theory which includes the effect of rotatory inertia. They represent the dynamic counterpart 
of yon Karman's non-linear plate equations. The coefficient #(o) is to be determined from the 
relation 

1 = #c0) (31) 
# 

A higher order approximation can be determined from Eq. (13) by using the procedure used 
in the above analysis. This theory would incorporate the effects of transverse shear and normal 
stress, as indicated by the presence of I, and v,. In this case use has to be made of the relation 
(see [3]) 

1 = fl(O) _{_ ,~2 fl(1) (32) 
# 

If we set 7 equal to zero in equations (25), (29) and (30), we obtain the equations of motion of the 
standard linear plate theory. The equations for the in-plane motion are now uncoupled from 
that for the transverse motion. 

5. Stress Resultants 

We define resultant forces and moments as follows : 

Nap= fh hGpdx3=ah fl_lGpd~3 
(33) 

Map = O'apX3 dx 3 = r a so~p~3d~3 
-h 1 

Dimensionless forces and moments are defined by 

Na p _ Nap ~ _ M~p (34) 
ah ah 2 

If we now substitute the expansions for the stresses (10) and use Eq. (18), (19) and (20) the first 
approximation stress resultants are given by 

[ 7 (I--v2)#(~ 22)] Nll  = 2 #  m) Vl,l q-VV2, 2 + 
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N12 = (1 - v)#(~ [V1,2 + V2,1 +7 (1 - v 2 ) #  (~ Vg,t 1/3,2] 

- I ' (1- ~2)#<~ + v~'22)] N22 --2# (o) vVI,I-]-V2, 2 + 

~11 = --~#(~ (v3,11 + vV3,22) 
M12 = --2( 1-V)#(0)2 V3 '12 

~22 = --~ #(o)2 (v v3,11 + v~,2~) (3 5) 

The constant a occurring in the above relations can be determined by the use of the boundary 
conditions. An example of this is given in [4]. 

6. Example 

For small vibrations, equation (36) become 

#(~ V 3 - W2#(~ 2 g 3 w+3 2 
, WxV3,~=O 

To determine the free vibrations of the plate, a solution of the form 

1/3 = P3(r r r (37) 

is assumed. On substitution into (36), one obtains 

r v 2 ~ + w ~ #(0)2 v ~ v ~ -  3 w~ v3 = 0 (38) 

Consider now the special case of a clamped rectangular plate. Let 11 be the length in the x~ 
direction and 12 the length in the x2 direction. The edge conditions can then be stated as 

(39) 

These conditions are satisfied by assuming V 3 to have the form 

V3 -- A sin 2 ~1 41 s in2 ~2 ~2 (40) 

where 

~rl rcl 

~ = ~ ,  ~2=/22 

Use of the Galerkin method yields the following equation for the determination of the fre- 
quency : 

#(0)4(a~+~24+2 2 2, W2#(~ 2 9 2 (41) 
3(~1~2) 4 + ~2)-- ~ W ~  = 0 

On substituting 

1 L # ( o )  _ _ 
# l ' (42) 

making use (9) and (14) and neglecting the effect of rotatory inertia, the following expression 
for the circular frequency w is obtained: 

W 2 87~4" n I 2( /1)  2 (11~ 4 ] (43) 
-3phi? 1 + ~  +~L/ j 

where D is the flexural rigidity of the plate. 
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